and Automation,

Robotics

for

Gordon and Breach Science

Architectures

Computer

Graham,

Specialized

(Ed.)

pp. 103-149.

1987,

Publ.,

J.

COMPUTER ARCHITECTURES
FOR
ROBOTICS AND AUTOMATION

Edited by James H. Graham

Chapter §

ARCHITECTURES FOR ROBOT
VISION*

T.N. Mudge
and
T.S. Abdel-Rahman

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109

INTRODUCTION

Interest in the area of computer processing of visual data has in-
creased considerably over the past decade. This has led to an
increasing number of applications for computers in that area, The
-applications vary from Robot Vision in industrial environments to
Tomography in medical environments. It is safe to predict that the
range of applications will continue to expand in the near future to
cover many other application areas and give a wider scope to
already existing applications. A partial list of applications include
the following [1]:

® Automation of Industrial Processes.

— Object acquisition together with a robot arm (*bin of parts
problem’).

* This work was supported in part by the Matcrials 1
Acronautical Laboratories, Acronautical Systems Di
Air Force, Wright-Patterson AFB, Ohio 45433-6502

ahoratory, Air Foree Wright
vision (AFSC). United States

103

trev
Typewritten Text
Specialized Computer Architectures for Robotics and Automation,
(Ed.) J. Graham, Gordon and Breach Science Publ., 1987, pp. 103-149.

14 TN MUDGE AND T.S. ABDEL-RAIIMAN

— Automatic tool guidance. .

— Visual feedback for automatic assembly and repair. .

— VLSI (Very Large Scale Intergration) circuit inspection and
checking.

— Inspection of printed circuit boards.

— Screening and inspecting plant m.s.:__._nm. .

— Inspection of castings for impurities and fractions.

® Medical Applications.
— Tomography. .
— Enhancement and analysis of X-ray images.
— Blood cell recognition and counting.
— Tissue and chromosome analysis.
— Aiding the blind.

® Remote Sensing.
— Cartography.
— Monitoring traffic. .
— Exploration of remote and hostile areas.

o Military Applications.

— Tracking moving objects.

— Automatic npavigation. .

— Target acquisition and range finding.

There are several disciplines that are concerned with the process-
ing of visual data or images. The v:::..Q. ones are: Image Process-
ing, which is concerned with the :szms_mm_@. .ﬁoz_m.n. n.:..s:no:.n:_
and restoration of images; Pattern Recognition, which is concerned
with classifying regions of the input image as one A.: s.?m.:s__w small)
set of possibilities; and Image Q:%E.E:&Sn.. which is E:._n.a at the
construction of a rich set of descriptors of images to facilitate the
interpretation and the understanding ..: those images [1]. m..wnc:mss.
disciplines include: Computer QSE:@ and Computer \r&w& .Cm-
sign. Systems that process images benefit q.::: the above .__m‘cv__.:ﬁ
to varying degrees depending on the specific nature of the applica-
tion at hand. . .

The objective of this chapter is to study mvcn_.:_ purpose architec-
tures for Robot Vision. This will be accomplished in two steps.
First, algorithms for Robot Vision are a.wn.:mwn.._ and a set of .732.-
marks of typical algorithms for _wc_x:. Vision is vqnmns_ng..v.nnc:g.
various classes of special purpose architectures for Robot Vision are

ARCHITECTURES FOR ROBOT VISION 108

discussed. The set of benchmarks is then used to evaluate the
performance of the various architectures and illustrate their basic
characteristics.

The remainder of the chapter is organized as five sections: the
rationale behind special architectures for Robot Vision; basic ter-
minology that is used throughout this chapter; algorithms for Robot
Vision including the set of benchmark algorithms; special computer
architectures for Robot Vision and their performance on the bench-
marks; finally, conclusions and final remarks,

RATIONAL FOR SPECIAL ARCHITECTURES

Robot Vision applications require very high computational power
that is beyond the capabilities of modern conventional computers.
This is principally due to the massive amounts of data that has to be
processed in such applications. Images, typically represented as two
dimensional arrays of M? pixels (picture elements), may have to be
processed at the rate of 30 images per second 10 meet real-time
video rate requirements. Typical values of M range from 256 to
4096. In some applications, however, M can be as large as 10°. Each
pixel in the image can have from 1 bit to 24 bits of data representing
a gray level value or a color intensity.

To illustrate the computational effort needed to process images,
Table 1 shows the processing time for a 512 x §12 x | byte image
on a conventional computer such as the VAX 117780 supermini,
which is capable of 1 MIPS (Million Instructions Per Second). The
first column shows the number of operations performed on each
pixel in the image. The second column shows the approximate
number of instructions needed to process the image. An average of
four instructions per operation is assumed. The third column gives
the execution time for the image. The numbers indicate that a
conventional computer would fall well behind the required com-
putational effort. Larger images require even longer processing
times. Furthermore, 30 images per second must be processed if
video rates are required.

Hence, it becomes necessary to employ special purpose machines

1ty T.N.MUDGE AND TS, ABDLEL-RAIIMAN

Ops per | Total No. | Time for
pixel of insirs. a VAX

1? 108 100 sec
(N {1y 17 min
{1 " 2.78 hr

Table 1 Processing times for a 512 x 512 x 1 byte image on a
VAX 11/780

that have sufficient processing capabilitics to provide the necessary
speedup over conventional computers. This can be achieved through
three means:

1. Using a large number of processors working in parallel. This is
referred to as Parallel Processing.

2. Using faster computer hardware technology.

3. Using better programming through optimizing compilers and
new algorithms.

Parallel processing is the basic means for providing computational
power for Robot Vision. Newer computer hardware technologies,
while providing high levels of integration that roughly quadruple
cvery two years, have only been able to increase speed by a factor
of 10 in the past decade [2]. Better programming cannot provide a
substantial speedup in Robot Vision applications due to the simple
but repetitive nature of the operations involved.

Furthermore, the nature of image data and the nature of Robot
Vision algorithms (as will be clear later) make paraliel process-
ing very attractive. Many Robot Vision algorithms involve opera-
tions that transform the value of each pixel in the image based on
the values of surrounding pixels. This locality in operations suggests
that image data be decomposed into a large number of subsets that
can be processed in parallel. Hence, it is not surprising that an
architectural characteristic of most special processors for Robot
Vision is the employment of parallel processing to achieve the
necessary computational power,

ARCINTECTURLES FOR ROBOT VISION 107

TERMINOLOGY

An image, a frame or a picture. P, is a two dimensional array of
pixels, P(i,j), ij=1,.... M. The term P(i,j) can stand for the
name of the pixel at (i,j) or the gray level value at (i,j). The gray
level value is typically an integer in the range 0,. . ..255. P(00) is
located at the top left corner of the array. The index i runs in the
negative y-direction. The index J runs in the x-direction. This is
shown in Figure 1.

A neighborhood of a pixel P(i,j). denoted by N(i.j), is a set of
contiguous pixels that include P(i.f). Some of the common neighbor-
hoods are:

® m X m neighborhood, (m odd). Defined as

NG.j) = I Pli + aj+B) af = n_.ﬁ_ TH_

2 2
1 — | —> M
1 N y
- tL,,
w E
! s
i i P(i.j)
Nid N(ij)
M
/
Image: a 2-dimensional array of gray
valued pixels

FIGURE 1 An image P(i.f).

R T.N. MUDGE AND TS, ABDEL-RAIHIMAN

FIGURE 2 The heap-of-paris image.

The 3 x 3 neighborhood is common to many Robot Vision
algorithms.

e m X 1 neighborhood, defined as

Ni.j) = {% + @) = |_.,NP_ _,Im_-_

® 1 x m neighborhood, defined as

Mijy=U rij+p = |_,Nh_ _.ml__
[

ARCHITECFTURES FOR ROBOT VISION 11]

Throughout this chapter, the image shown in Figure 2 will be used
to illustrate Robot Vision algorithms. The image contains a heap of
industrial parts.

ALGORITHMS FOR ROBOT VISION

The processing of images for Robot Vision proceeds in the three
major stages. In the first stage, referred 1o as the low level process-
ing stage, the image is enhanced and features in the image are
detected. Algorithms that perform these functions are referred to as
low level algorithms. Low level processing draws most of its techni-
ques from the field of image processing. Hence, the low level pro-
cessing stage may be considered the stage of image processing. In
the second stage, referred to as the intermediate level processing
stage, the features detected in the first stage are extracted from the
image. Algorithms that perform such functions are referred to inter-
mediate level algorithms. In the third and final stage, referred to as
the high level processing stage. the extracted features from the
image in the second stage are classified and analyzed. Algorithms
that perform these operations are referred to as high level algorithms.
High level processing draws most of its techniques from the fields of
pattern recognition and image understanding. Hence, the high level
processing stage may be considered the stage of image analysis and
understanding.

The above mentioned stages of processing will be referred to as
the Robot Vision System (RVS). The RVS is depicted in Figure 3.

In this section, the basic characteristics of each processing stage
and its algorithms are discussed. Benchmarks of typical algorithms
from each stage are also presented.

Stage 1 Siage 2 Stage 3
Raw Enhanced Featwe Oowcts
inlermecale .
image . Low (evel image - Level Lests | High Love! aenhhed
Pocassing P sing Processing

FIGURE 3 The Robot Vision system.

Ho TN, MUDGE AND TS, ABDEL-RAHIMAN

Low Level Processing

Low level processing generally involves enhancement, restoration,
noise removal and feature detection operations. This stage of pro-
cessing is characterized by:

I. The image is represented as a two dimensional array of pixels.
Each pixel represents the gray level value at its coordinates. This
representation of the image, which is referred to as a low level
representation, can be characterized in the following manner:
(a) The spatial information regarding pixel location is implicit in
the representation of the array. That is, no explicit address
information is stored.

(b) The classification of pixels is explicit in the representation
through the values of the pixels in the array.

(c) The features in the image are implicit in the representation
through the relationships among the pixels.

A sct of deterministic operations is applied to each pixel in the

image. As a consequence, cqual size areas of the image take

cqual amounts of processing times. Furthermore, because of the
deterministic nature of the operations, no data dependent deci-
sions are made during run-time. These operations basically are of

four types|3): .

(@) Input/Quiput Operations: for human interaction and image
storage/retrieval.

(b) Context-Free Operations: point-wise operations on single
or multiple images. Examples include histogram generation
and general tonal mapping.

(c) Context-Dependent Operations: the value of a pixel is modi-
fied based on the values of the pixels in its context or
neighborhood. Hence, these operations are also referred to
as neighborhood operations. Context dependent operations
form the majority of low level operations. Examples include:
cdge and line detection, noise removal and filtering.

(d) Global Transformation Operations: the image is transformed
by Fourier, Cosine, Hadamard and similar transforms.

~

ARCINTECTURES FOR ROBOT VISION n

The following are the set of low level algorithms used in our
benchmark. They illustrate the general characteristics described
above for low level algorithms.

Convolving with an FIR function

In this algorithm, the input image is convolved with a Finite Impulse
response (FIR) function to give the output image. The FIR function
is a matrix K(a. f3) of constant coefficients of dimensions m x m.
This FIR matrix is also referred to as the kernel. The kernel is
moved across the image in one pixel steps to implement the con-
volution function. In each step. the pixel P(i,j) coinciding with the
center of the kernel is replaced by Q(i.j), where

QGij) = Mw;.w:. + aj + f)K(a, p).

Convolving the image with a FIR function falls into the type of
context dependent operations. The kernel K(i,j) can be viewed to
coincide with the m x m neighborhood for the pixel P(i,j). The
value of P(i.j) is then replaced by a new value, Q(i.j). which is a
function, linear in this case, of the pixels in the neighborhood. This
is shown in Figure 4.

P(i.j)

Q(i.j)

N\NGij)

FIGURE 4 Convolving with the FIR funclion.

12 TN MUDGE AND T.S. ABDEL-RAIIMAN

4]0 | 1t |2 |1

2] 0|2 o oo

4101]2]
A, ay

FIGURE 5 The Sobel edge detector kernels.

A frequently used example of an algorithm involving the con-
volution of the image with FIR filters is the use of the Sobel
operators for edge detection|4]. The image is convolved with each
of the two FIR kernels A, and A, shown in Figure. 5. The result of

the convolution are the two images e, and e, where:

e.(i,j) is an M X M array of x-direction edge (gradient) strengths.
e(i,j) is an M X M array of y-direction edge (gradient) strengths.

These two images are then combined to form a combined edge
strength array. E. and an edge direction array, 6, where

E(ij) = Ve? + ¢
and
e, n
68ii) = —_—
(i,]) nz.:EA) v >

We assume that the bright side is 1o the left of the edge when
pointing in the direction of the edge. A numerical example that
illustrates the Sobel edge detection operators is shown in Figure 6.
The heap-of-parts image is shown in Figure 7 after the application
of the Sobel operators.

ARCHITECTURES FOR ROBOT VISION 13

W e I

1 1
2 0
1 -1
e, =0
@lnwﬂgmﬁwll—w -Ihul
2 2
”.a”..
2
1
e, = 191.25 ¢y = - 191.25
E == 270.47 @l!.&aaahm. L R 1§
1 2 4

(E Would be 255 if .Q_m " Q_m weights were used.)

FIGURE 6 A numerical example of the Sohel operators.

14 T.N.MUDGE AND T.S. ABDEL-RATIIMAN

FtGURE 7 The heap-of-parts image aficr the Sobel operators.

Convolve or Transform

When the convolution kernel K(i.j) becomes large o:acm—... it is
more computationally efficient to perform the convolution in the
frequency domain by utilizing the convolution theorem|5.23):

K*P=F"(FK)x FP)).
Where K and P are the kernel and the image to be convoived

respectively, * denotes the convolution operation, ‘% is the Discrete
Fourier Transform (DFT) and % ' is the inverse DFT.

ARCHITECTURES FOR ROBOT VISION 1S

In the spatial domain. the time to convolve the M x M image P
with the m X m kernel K. in units of the time for an addition, is
given by

T, = m’M? (1 + p).

where p is the time for a multiplication in units of the time for an
addition (we have ignored boundary effects).

In the frequency domain, it is necessary to extend both the image
and the kernel with 0's so they have the same period L. i.c., they
are both L x L matrices. To avoid wraparound errors, the value of
L must be chosen such that the condition L = M + m — 2 is
satisfied[5].

The DFT of an L x L matrix Q. which is given by

L-1L-1

FPkD) = 3 T PUHWEW],

i=t =0
IN:,\W_V
L
Transforms (FFT's) and performed in Llog,(L) complex multiplica-
tions and 2L%log,(L) complex additions. The same count of opera-
tions is incurred when the inverse DFT is performed.

Therefore, the application of the convolution theorem can be
performed in uPN_omNAC + L2 complex multiplications and
ohu_omNAS complex additions. Assuming that a complex addition is
two normal additions and a complex multiplication is four normal
multiplications plus two normal additions, then. in units of time for
an addition, the time to convolve the image in the frequency domain
is given by

where W, = exp A . can be split into two Fust Fouricr

Ty = 6(3 + 2u)L%ogy(L) + 2(1 + 2p)L°.
Then direct convolution should be used only if
T.<T,
Assuming g >> | and M > m then the above condition becomes

m* > 12loga(M) + 4,

e T.N. MUDGE AND T.S. ABDEL-RAIIMAN

which requires that m be about 9 for a 512 x 512 image.

The above results hold only for the serial implementation of
convolution. In the case of parallel implementation, data movement
time, if necessary, must be taken into consideration as well.

Non-Maximal Suppression

-The non-maximal suppression algorithm is used to thin the thick
edges obtained by edge operators such as the Sobel edge operator to
exactly one pixel wide edges. It performs that function by suppress-
ing (i.e. eliminating) locally non-maximal strength edge points in the
direction normal to the edge direction[6].

The algorithm is applied to each pixel P(i,j) in the input image
and needs edge strengths at 3 points in the image: the pixel P(i,j)
and two points that lie on the normal to the edge direction at the
pixel P(i,j). This is depicted in Figure 8. The edge vector at P(i,j)
which has magnitude E(i,j). the edge strength, and slope &(/,j), the
edge direction, is shown as the vector E. The two points P
and P, are obtained by extending the normal to the edge direction

my

Y

P(id)

o1 B .

FIGURE 8 Non-maximal suppression.

ARCHITECTURES FOR ROBOT VISION "7
as shown in the figure. As the edge strengths are available only at
discrete intervals, it becomes necessary to interpolate for the edge
strengths at points P and P, as follows:

E,=BE(i - 1j) + aE(i — 1j - 1)

and

E, = BEGi + 1)+ 1) + aE(i + 1),

FIGURE 9 The heap-of-parts image after low level operations.

LR T.N. MUDGE AND T.S. ABDEL-RAItMAN

where E, and E, are the edge strengths at points P, and P, respec-
% | and B=1-

€«
N< N<
The suppression of the non-maximal point is then implemented as

tively, @ =

If E(i.j) < E, or E(i,j) < E, then eliminate E(i,j).

The heap-of-parts image is shown in Figure 9 after edge detection
and the non-maximal suppression.

Intermediate Level Processing

The stage of intermediate level processing involves the extraction of
features from the enhanced image produced by low level processing.
The extracted features are then re-represented in a more convenient
data structure to facilitate their high level processing. Hence, this
stage is basically a transducer stage between the low level and the
high level processing stages. This stage of processing has the follow-
ing general characteristics:

1. The representation of the image in the input to the processing is
a low level representation.

2. The representation of the image in the output is a set of attri-
butes that explicitly describe the features in the image. That is,
the low level representation of the image at the input, in which
the features in the image are not explicit, is transformed into
another representation in which features are explicitly and,
hence, more conveniently represented. In general, it is difficult
to characterize the data structure representation at the output
of intermediate level processing any further. This can be
attributed to the fact that efficient and convenient representa-
tions of diffcrent features require different data structures. Fur-
thermore, different algorithms may elect to represent the same
feature in different ways depending on the use of the feature in
the algorithm. However, the following can be said about these
representations:

(a) The spatial information regarding the location of the pixels is
explicit in the representation.

ARCHITECTURES FOR ROBOT VISION ty

(b) The representation of a pixel value is generally restricted to a
small set of values indicating the membership of the pixel in
a feature set,

3. The set of operations applied to the pixels of the image generally .
depends on the value of the pixel and/or its context. As
a consequence, equal size areas of the image take different
amounts of processing times.

The following algorithms form the benchmark for intermediate
level algorithms.

Edge Following Algorithm

>._=_o=m.. edge detection and non-maximal suppression yield one
pixel wide edges, these edges are still not related or organized in
any way that facilitates their further processing. Furthermore, there
is a large number of pixels that do not represent any edge points
and, hence, are of no further interest. The edge following algorithm
can be used to extract the edge points and organize them in the
form of connected boundary segments. It also discards pixels that
are not part of these boundary segments.

€
edge point

T ™

edge point if predecessor was edge

\

never an edge point

T/2

—
distance along connected edge
FIGURE I} The cedge following algorithm.

120 T.N. MUDGE AND T.S. ABDLL-RATIMAN

The edge following algorithm works as follows|7). Starting at any
edge pixel in the image, the algorithm traces the boundary by
moving from one edge pixel to its neighboring one. If at any pixel
the edge strength is greater than T, where T is a predefined thres-
hold, then the pixel. belongs to the boundary segment. If the edge
strength at the pixel falls between ..ml and T, then the pixel belongs
to the boundary only if its predecessor pixel is already on the
boundary. Finally, if the edge strength at the pixel is less than w.
then that pixel is discarded. At this point the boundary segment
terminates and all edge pixels that belong this boundary segment are
removed from the image and are represented by a linked list. Each
link in the list has information regarding the edge strength, edge

FIGURE Il The heap-of-parts image afier the edge following algorithin

ARCHITECTURES FOR ROBOT VISION 121

direction and coordinates of one pixel in the boundary segment. The
edge following process is depicted in Figure 10. The above process
then repeats starting at a new edge point in the image. The edge
following algorithm terminates when there are no more edge points
in the image. The output of the algorithm is, hence. a set of linked
lists each describing a boundary segment in the image.

The edge following algorithm illustrates the basic characteristics
of intermediate level algorithms. The features, in this case edge
pixels, are extracted from the image and re-represented along with
explicit address information in another data structure, in this case a
linked list. Furthermore, the processing of equal area images re-
quire, in general, different amounts of processing times as the
images contain, in general, unequal counts of edge pixels.

The heap-of-parts image is shown in Figure 11 after the edge
following algorithm.

The Hough Transform

The Hough transform algorithm [7.25] can be used to identify edge
pixels that form straight lines in the image. It does so by consider-
ing all possible lines at once and then rating each on how well it
explains the the original image data.

The basic concept behind the Hough transform is the relation
between points in the image space and lines in the parameter space.
This relation is illustrated in Figure 12. For a point (X,, Y,) in the
image space, the set of all possible lines that can pass through that
point must satisfy the equation Y, = mX, + c. If (X,, Y,) are
considered to be fixed, allowing m, ¢ to be variables, then this point
corresponds to the line ¢ = —X,m + Y, in the c-m space or the
parameter space. Hence, a point (X.Y) in the image space corres-
ponds to a line in the parameter space governed by the equation Y
= mX + c. Then if the two points (X,.Y,) and (X,.Y3) are connec-
ted by the line AB, which is described by the equation Y = m\X +
¢y, then there must exist two lines in the parameter space corres-
ponding to these two points which intersect in the point (m,.c,). By
using the same argument, all points that are on the line AB must
correspond to lines in the parameter space that intersect at the point
Asz_ .«._v.

The relation between the image space and the parameter space
can be used to implement the Hough transform as follows. The

T.N. MUDGE AND T.8. ABDEL-RAIIMAN

Ce .x»30<~

image Space Parameter Space

FIGURE 12 The rclation between image space and parameter space.

o ®
LY \ 3 N A\
o~ / oM
0
...... /. .t /’
At L \
\.os.s . * . Al.o'..o ’
el / v / [
7N
\ o
* N) b
\
~\
\
AN
A} W
NN “ 1.
. N\ NN //
N\ N
// JI . ’
N o,
////

N

FIGURE 13 The heap-of-parts image after the Hough transform.

ARCHITECTURES FOR ROBOT VISION 123

parameter space is quantized in the form of an array that is referred
to as the accumulater array and is initialized to zeros. Then for each
edge point in the image array, all accumulator array elements that
are intersected by the line corresponding to the edge point are
incremented by 1. Edge points that lie on straight lines in the image
array intersect at the same location in the accumulater array and,
hence, cause maximum accumulation. Therefore, if local maxima in
the accumulater array are detected, the parameters of all straight
lines in the image can be obtained. The values of the accumulater
array elements give a measure of the number of points in each line.

The heap-of-parts image is shown in Figure 13 after the Hough
transform.

High Level Processing

The objective of high level processing is generally the recognition of
objects in the image. This is done through analysis, classification
and identification of features extracted from the image during earlier
low and intermediate level processing. Hence, high level processing
may be generally characterized by analysis of feature lists that aim
at the identification of objects in the image. The high level process-
ing stage is basically the stage of image understanding.

High level processing and high level algorithms are, in general,
less well understood and more difficult to characterize than low level
and intermediate level processing and algorithms. This is basically
attributed to: .

1. High level algorithms generally involve symbolic processing of
feature lists and/or employ techniques from several areas such as
calculus, graph theory, differential geometry, category theory,
logic and artificial intelligence. These techniques posses very
diverse characteristics.

2. There is no uniform structure for the representation of the image
in high level processing. In fact, high level algorithms vary con-
siderably in this aspect. This is contrary to low level algorithms,
for example, in which the representation of the image data is
very uniform (two dimensional arrays of pixels).

We have, somewhat arbitrarily, chosen the following algorithms
for our benchmark.

124 T.N. MUDGE AND T.5. ABDEL-RAIIMAN

Graph Theoretic Algorithms

Graph theoretic algorithms refer to a class of high level processing
algorithms that classify and recognize objects in the image by ex-
amining features extracted from the image against pre-defined
models of the features of possible objects that can appear in the
image[7]. A pre-detined model of the features of an object is re-
ferred to as the template of that object. That is, graph theoretic
algorithms are matching algorithms in the general sense.

The features extracted from the image are represented as a direc-
ted graph (V,E) which consists of a set of vertices V and a set of
edges E. The vertices represent the features extracted from the
image. The edges represent relationships among these features. The
template of an object is also represented in the same form. This
representation of features is referred to as a relational structure|7).

Hence. the process for matching an object to a template can be
formalized as one of the graph isomorphism related problems, such
as graph isomorphism, subgraph isomorphism and double subgraph
isomorphism.

In graph isomorphism, given the image data graph (V,, E,) and
the template graph (V,.E,), the objective is to find a one-to-one
onto mapping (i.e. an isomorphism) f between V, and V, such that
for vi, v; € Vi, V3 f(v)) = v, and for each edge E, connecting any
pair of vertices vy, v, € V|, there is an edge E, connecting f(v,) and
f(v2). In subgraph isomorphism, the objective is to find isomorph-
isms between the template graph and subgraphs of the image data
graph. In double subgraph isomorphism, the objective is to find all
isomorphisms between subgraphs of the template and subgraphs of
the image data graph.

Graph isomorphism related techniques as describcd above are
pure matching techniques. That is, the match between the template
and the object should be perfect otherwise no-match is obtained.
This can limit the usefulness of these techniques in the case of noisy
input and/or imprecise templates. It is possible, however, in the
implementation of the technique, to relax the strict rules of isomor-
phism correspondence and obtain a computational version of the
technique that can take into consideration noise and imprecise tem-
plates. This is gencrally done by introducing matching metrics that
measure the goodness of the match and hence, provide a quantified
measure of matching. There are several methods for implementing

ARCHITECTURES FOR ROBOT VISION 125

b Sl / (¢) (s,) @

FIGURE 14 An cxample illustrating backirack search.

graph isomorphism techniques with matching metrics. However,
only the technique referred to as backirack search is considered in
this chapter.

The backtrack search technique refers to a set of possibly exhaus-
tive search algorithms such as depth-first search, breadth-first search
and best-first search. These algorithms differ in the order by which

126 T.N. MUDGE AND T.S. ABDEL-RAIIMAN

the search process proceeds. Therefore, only best-first search is
described.

A generic version of the best-first backtrack search technique is
tlustrated using the simple example in Figure 14. The straight line
segments extracted from the image and the relation ‘next to' are

used to construct the directed graph for the image data. This is .

shown in Figure 14(c). (d). The template of the object to be located
and its pre-computed directed graph are shown in Figure 14(a), (b)
respectively.

The backtrack search locates the object in the image in steps by
matching a line segment in the template to a line segment in the
image in each step until all line segments in the template are
matched. A heuristic function is used to aid the search after each
step by returning a value that indicates the goodness of the matches
possible from that step. The heuristic function takes into consider-
ation several factors such as how well the two straight lines match
and how important the particular line segment in the template is in
distinguishing the object in question from other objects that can
appear in the image. This is referred to as the saliency of the line
segment[8]. The search continues in the direction of the largest
value returned by the heuristic function up to that point in the
search.

The resultant search tree is shown in Figure 14(e). The letters to
the right of each node in the tree indicate the two line segments
matched at this node. The number to the left of each node is the
value returned by the heuristic function. The integer inside each
node indicates the order in which the nodes were expanded (de-
creasing heuristic function value). The search terminates when the
object is located after matching C to ¢,.

The Consistent Labeling Problem

The consistent labeling problem refers to the problem of assigning
labels consistently to objects in the image. This problem is also
known as relaxation labeling and constraint satisfaction|9]. Consis-
tent labeling algorithms are generally employed after all objects in
the image are identified.

The consistent Libeling problem has four basic components: a set
of objects identificd in the image. a finite set of relations among the

ARCHITECTURES FOR ROBOT VISION 127

objects, a finite set of labels and a set of constraints that determine
which labels may be assigned to which objects. Hence, the problem
may be stated as: given the input as a relation structure (the objects
and their relations), the labels and the constraints, assign labels to
objects without violating the constraints.

The solution to the consistent labeling problem can be imple-
mented in a number of ways|7]. It is also possible, in general, to
employ backtrack search techniques to solve the consistent labeling
problem(10,11].

ARCHITECTURES FOR ROBOT VISION

Research in special purpose architectures for w.vvc.lsmmc: has
progressed considerably over the past decade. This has resulted in a
large number of special purpose architectures for Robot Vision.
With recent advances in computer hardware technology which is
causing a steady decline in computer hardware cost, it is becoming
feasible to build such special purpose architectures.

Special purpose architectures for Robot Vision can be divided

Paralie!
Archrtectures
for Robo!
Vision

Commercial
Siate-of-
the-An
Machines

Massively
Paralie!
Machines

Shared
Memory
Machines

Distributed
Memory
Machines

Raster
Pipehne
Machines

FIGURE IS5 Taxonomy of special purpose architectures for Robot Vision.

128) T.N. MUDGE AND T.S. ABDEL-RAIIMAN

into two major groups: Commercial state-of-the-art machines, and
Massively parallel machines. The first group of architectures can
be further subdivided into Raster Pipeline machines and Array
machines. The second group of architectures may also be subdivided
into Distributed Memory machines and Shared Memory machines.
This taxonomy of special purpose architectures for Robot Vision is
shown in Figure 15. .

In the following sections, the basic features of each group of
architectures are considered. The performance of each group on the
set of benchmarks is also discussed.

Commercial State-of-the-Art Machines

The commercial state-of-the-art machines group of architectures
refegs to special purpose architectures that are currently available
commercially. These machines are generally characterized by:

1. Low cost: the use of state of the art technology makes it possible
to build these machines at low cost.

2. Most commercial state-of-the-art machines employ fixed point
arithmetic. However, with advances in computer hardware tech-
nology, floating point arithmetic is starting to appear.

3. Machines that belong to this group of architectures function
basically as attached processors to a host computer. The host
computer, usually a conventional one, supervises the operation
of the attached processor and performs functions such as loading
and unloading of data and programs. The host computer also
performs most 1/O operations.

4. These machines are intended for Robot Vision applications
which are generally simple in nature such as simple inspection of
factory samples and aiding CAD graphics computations. There is
also a reasonable amount of software available that implement
these applications.

Raster Pipeline Machines

The basic architecture of Raster Pipeline machines is depicted in
Figure 16. It employs a number of processing elements that are

ARCHITECTURES FOR ROBOT VISION 129

cascaded in series to form a pipeline of processing stages. The
processing stages are controlled by the controller which issues in-
structions to the stages through a stage instruction bus during a
setup phase and then streams the image data into the pipeline
during the processing phase. The image buffer is used to hold the
image data to be streamed into the pipeline as well as receive the
output data from the pipeline. The host computer supervises the
overall operation of the pipeline, the controller and the image
buffer. Hence, the processing stages, the image buffer and the
controller all function as an attached processor to the host computer
(12}.

Images can enter the pipeline in two ways: (1) the host sends the
image to the image buffer where the controller streams it through
the pipeline, back into the buffer and finally back to the host; and
(2) the host sends and receives and image to and from the pipeline
directly.

Images enter the pipeline as a steam of pixels in a sequential line-
scanned raster format and move through the pipeline at a constant
rate. Shift registers within each stage store two contiguous scan lines
of the image. Furthermore, window registers, also within each stage,
hold the pixels that form a 3 x 3 neighborhood. Each stage per-
forms a pre-programmed function on this neighborhood. This func-
tion is referred to as the neighborhood function. The neighborhoad
function involves the transformation of the pixel in the center of the
neighborhood based on that pixel value plus the values of its eight
neighbors. The line and window registers are depicted in Figure 17.

At each discrete time step, a new pixel is clocked into each stage.

INSTRAUCT IONS

-————————————

SYAGE IMSTRUCYIONS _

comvaoLLER 3 1 _

- - - - sTAcL) Tace 2 STAGL B _

RASTES OUTPUT _

FIGURE 16 Rasicr Pipeline machines architeclure.

130 ’ TN MUDGE AND 1S, ABDEL-RAIIMAN

ho— M.

ol
A

Py [nlee lovg g

PR nifaniray

e b Masiimen

P 4[Mes)| Pse)

ML I ReS) | Pies)

P16.0) [S [Prs 0y
T
_ —— -
v ras)
PN IMe2 [P (ose) mss) [msn ranrennse ’ggmgﬂ
—
| ——
P Iy P | Pt e | vem [ey Lol L T] L 1T)

e mrres m——

FIGURE I7 Line and window registers.

Simultancously, the contents of all shift registers are shifted one
element. Each stage performs the neighborhood function on the
neighborhoaod it contains obtaining a new value for the center pixel.
At the next time step, a new pixel is shifted into each stage and the
transformed center pixel is shifted into the next stage. Hence, at
cach time step, each stage holds a new neighborhood in its window
registers. The neighborhoods in three successive stages of the pipe-
line are shown in Figure 18. The output of the last stage forms the
output stream of the pipeline and is fed back to the image buffer or
directly to the host.

ARCHITECTURES FOR ROBOT VISION 13

e ol
| g Med e

Siage 3
Snge 2
Swage 1

FIGURE 18 Neighborhoods in three successive stages of the pipeline.

Raster Pipeline processors offer a number of advantages:
1. Simple interconnections between the stages. This simplifies de-
sign and enhances reliability.

2. The input is in raster scan format which matches the output of
many sensors. Hence, the image may be fed directly without
reformatting for real-time processing.

3. At steady state, the output is obtained from the pipeline at a
constant rate equal to that of the input to the pipeline.

However, there are several disadvantages for Raster Pipeline
machines:

1. It s difficult to perform branching. The pipeline has 1o be flushed
first.]
2. It is difficult to process multiple images at the same time.

3. Itis not possible to handle 1 X m and m x 1 neighborhoods that
occur in FFT's and separable kernels.

4. They have a restricted set of instructions.

The cytocomputer is a typical example of Raster Pipcline
machines|12,13].

132 T.N. MUDGE AND T.S. ABDEL-RAIIMAN

Performance on Benchmarks

Low Level Processing. Assuming 16-bit fixed point arithmetic with
100 nsec multiply/accumulate time, Table 2 shows the times needed
for convolving the image with an m x m FIR kernel. Each stage
needs m — | line registers and m*> window registers in order to be
able to perform the convolution.

In order to perform the non-maximal suppression algorithm, the
images containing the edge strength and the edge direction have to
be streamed into the pipeline together, with a resolution of 8 bits
per pixel. The non-maximal suppression algorithm involves less
computations than'a 3 x 3 convolution algorithm. Hence, the values
for the 3 x 3 convolution algorithm in Table 2 are an upper bound
for non-maximal suppression execution time provided additional
hardware is available in each stage to implement the decision
making required in this algorithm.

Intermediate Level Processing. The image array must be streamed
through each stage of the pipeline K times, where K is proportional
to the length of the longest sequence of connected pixels having
strengths in the range (T, 1| before a strength T pixel occurs. That

. |
is, K « —_ where m® is the number of window registers in the

me
stage.

It is virtually impossible to implement the Hough transform
algorithm on Raster Pipeline machines.
High Level Processing. The operations of high level processing
algorithms are all virtually impossible to implement on a Raster
Pipcline machine. Implementing search techniques, involved in high
level algorithms, requires the capability of dealing with dynamic
data structures. The design and instruction set of these architectures
can not provide this capability.

Array Machines

The general block diagram of the Array machines architecture is
depicted in Figure 19. It consists of an array processor (AP) which
has its own local memory. The AP is generally a high speed pro-
cessor that is optimized for vector and array operations. The AP
communicates to the host computer through a high speed DMA
channel. The image array is sent to the AP memory by the host over

ARCHITECTURES FOR ROBOT VISION 133

Host AP
Memo Memo
DMA
Channel

. Data
ot KT o D%

FIGURE 19 The architecture of Array machincs.

CONTROL AWTHIETC Suony
PROCESSOR PROCESSOR BASE MEMORY XPANSION
oth [® 16 Mynes
Pregram Mumary Prgram Momary [")
26T (1M
omect access | | omecraccess || wostemerrace O | D
MeUTCHANNEL | | OUTPUT CHavEL | | oot & Shars bammay
tons e wasea St Cramnet st [Jensw

AND's D/A's
HOST COMPUTER BUS

FIGURE 20 The ZIP3216 array processor.

the DMA channel. The AP then performs the required computation
on the image array at high speed. The result is then sent back to the
host over the DMA channel. Therefore, the use of the term array in
this context reflects the nature of the data being processed.

Array machines offer several advantages:

I. Array machines offer more flexible programming than Raster
Pipeline machines.

2. Array machines can easily handle large, symmetric and scparable
kernels.

134 TN MUDGE AND T.S. ABDEL-RAIIMAN

3. The Array machine can operate in parallel with the host
computer,

A typical example of the Array machines architecture is the
ZIP3216 array processor|14]. The block diagram of the ZIP3216 is
shown in Figure 20.

Performance on Benchmarks

Low Level Processing. A typical array processor, the ZIP3216,
employs 16 bit fixed point arithmetic with 100 nsec multiply/accu-
mulate time. Table 2 again shows the time for convolution for
different kernel sizes.

M = 256 M = 512
m time (sec.) | time (sec.)
3 0.06 0.24
5 0.16 0.66
7 0.32 1.28
9 0.53 2.12
] 0.79 317

Table 2 Convolution times on Raster Pipeline machines

Intermediate Level Processing. The architecture of Array machines
allows the processor to ignore non-edge pixels that are not needed
for processing. In our experiments, the probability of a pixel heing
on an edge was typically in the range of 0.1-0.2. That is, less than
20% of the image has actually to be processed (20K to 50K bytes in
a 256K byte image). Hence, for Array processors, the times for
intermediate level processing is less than those for low level process-
ing. This contrasts favorably with Raster Pipeline machines.

High Level Processing. Current Array machines do not provide
the desircd functionality for dealing with dynamic data structures
needed for high level processing. In principal they could; however,
this type of processing is intended to be done in the host and can be
done concurrently with other processing.

ARCHITECTURES FOR ROBOT VISION 135

Massively Parallel Machines

The Massively Parallel machines group of architectures refers to
parallel architectures that employ a very large number of processors
to achieve massive parallelism. The processors are interconnected in
Someé manner to allow the sharing of data. Massively Parallel
machines are generally characterized by:

1. High cost: due to the large number of processors and their
interconnections, the cost of these machines is generally very
high.

2. Massively Parallel machines are not widely available, They typi-
cally exist in research labs. In fact, many of these machines have
yet to be implemented.

3. Major research must still be conducted in the areas of software
and algorithm’ design for these machines.

4. /O remains a bottleneck in these machines yet it has received
very little attention.

The group of Massively Parallel machines is divided into two
major subgroups: Distributed Memory machines and Shared Memory
machines.

Distributed Memory Machines

In this group of architectures, each processor has its own local
memory and the processors are interconnected to each other via
communication links. The processors use these communication links
to share data. The following are some examples of Distributed
Memory machines:

Arrays

In this case, the processors are interconnected together to form a
grid of processors. This is shown in Figure 21(a). Each processor is
connected only to its four neighbors in the grid. The term array, in
this context, is different from its usc in the case of commercial state-

136 T.N. MUDGIE AND T.S. ABDEL-RAIIMAN
@ h &
N processors oMl
2 b
N processors
c d

FIGURE 21 Distributed Memory architcctures.

of-the-art machines and reflects the two dimensional spatial array ...m
processors that form the grid. The advantage of ._:m. architecture is
that the interconnection patterns are simple and are San.vo:;c:. of
the number of processors of the array. The &muas..::.m..c is that a.::.
movements across the grid beyond the four neighbors are time
consuming (O(VN)). . .

Examples of the array massively paraliel E.o__:nn.:_.m include the
iac IV{15], which consists of 256 processors organized as :.”:..
8 x 8 grids of processors; and the sz.,.._<c_< J.:.__m._ Processor MPJ
|16}, which consists of a 128 x 128 grid of bit serial processors.

ARCHITECTURES FOR ROBOT VISION 137

Pyramids

In this case, the processors are interconnected together to form a
pyramid of processors. This is shown in Figure 21(b). Each pro-
cessor is connected to four neighbors, a parent and four children
processors. The advantage of this architecture is the simple inter-
connection pattern that is independent of the number of processors
as well as the short distance between the processors; no two pro-
cessors are more than O(logy(N)) steps apart. The disadvantage is
congestion in the upper levels during system wide data transfers.

Examples of the pyramid massively parallel architecture include
the PMPP[17] and the Pyramid Machine[26).

Completely Connected

In this case, every processor is connected to every other processor in
the architecture. This is shown in Figure 21(c). Hence. each pro-
cessor is exactly one step apart from any other processor. The
advantage of this architecture is the high connectivity of the pro-
cessors. The major disadvantage is the number of interconnections
that grows quadratically with the number of the processors.

Hypercubes

In this case. the processors are connected to each other in such a
way to form a hypercube array. This is shown in Figure 21(d) for 64
processors. The hypercube architecture offers several advantages:

1. The hypercube architecture is recursive. This makes the architec-
ture recursively partitionable into smaller hypercubes.

2. It is possible to map the hypercube interconnection pattern
into other important interconnection patterns such as grids and
pyramids.

3. The hypercube architecture provides a good compromise be-
tween the decreasing proximity of processors and the number of
interprocessor connections.

Examples of the hypercube architecture include the Intel iPSC,
the NCUBE and the Ametek hypercubes. Table 3 summarizes and
compares their basic features.

1R TN MUDGE AND TS, ABDEL-RAIMAN

Intel Ametek NCUBLE/en

iPSC 14/n
No. nodes (max) 128 256 1024
Memory per node 512KB IMB 128KB
CPU 286/287 286/287 Custom

16 bit 16 bit 32bit
MIPS/node 0.30 0.30 2.00
MFLOPS/node 0.07 0.07 0.50
Node-to-Node 150KB/sec N/A IMB/sec
/O Bandwidth IMB/sec N/A 9)MB/sec

Table 3 Commercially available hypercubes

Shared Memory Machines

In this group of Massively Parallel architectures, each processor
contains a limited size local memory and the processors are connec-
ted to a set of globally shared memory modules by an interconnec-
tion network. This is depicted in Figure 22. Hence, all processors
share one common memory.

The interconnection network provides the means by which any
processor may access any memory module as well as the means to
resolve any conflicts that may occur on memory modules. There are
numerous types of interconnection networks ranging from single
shared buses to full crossbar switches|24).

The Shared Memory architecture has the advantage of providing
a large shared memory for the processors. This is convenient for
conventional block structured languages that imply a shared memory
architecture such as Ada. However, as the number of processors
increase, the interconnection network dominates the system cost
and can degrade its performance.

Examples of interconnection network based machines include:
PASM[I8], which consists of 1024 processors and a reconfigurable
multistage interconnection network; and the 1BM RP3{19] which
uses 512 processors. .

The performance of Massively Parallel machines on .__.n bench-
mark algorithms is presented below for hypercube architectures.
The use of the hypercube architecture as a representative for Mass-

ARCIUTECTURES FOR ROBOT VISION 19

Interconnection Network

FIGURE 22 Shared Memory architectures.

ively Parallel architectures is motivated by the several advantages
this architecture offers and the fact that a number of hypercube
machines are already commercially available. A model for hyper-
cube architectures is first presented. This model is then used to

evaluate the performance of hypercube architectures on the bench-
mark algorithms,

A Model for Hypercube Machines

An n-cube array can be constructed recursively from N = 2" pode
processors as follows:

I. Basis Step: Form a l-cube from 2 processors connected by a
single communication link. Label one node 0 and the other 1.

2. General Step: Construct an n-cube from two (n — 1)-cubes as
follows. First prefix the node labels in one of the (n — 1)-cubes
with an 0. Second, prefix the node labels in the other (n — 1)-
cube with a 1. Finally connect the two (n — 1)-cubes with com-
munication links between pairs of nodes that have labels differing
only in their most significant bit. A 4-cube (16 nodes) is shown in
Figure 23.

140 T.N. MUDGE AND T.S. ABDEL-RAIIMAN ARCHITECTURES FOR ROBOT VISION 141

Tape

v
Channel
Cube Cube
Manager Array

Intemode Links

FIGURE 23 A 4-cube. FIGURE 24 The hypercube sysiem.

The cube array is connected via a set of /O channels to a cube
manager. This is shown in Figure 24. The cube manager is used for Bidirectional Links
/O (disks. tapes, cameras, sensory devices, etc.), as a peripheral
controller and for program development. The cube array and the A_
cube manager are referred to as the hypercube system. r J

A modcl for the node processor is shown in Figure 25. It consists H

1]

of a CPU with a cache or large register file, main memory and n + |
bidirectional DMA channels. The first n of the DMA channels are
used to join the node processor to its nearest n neighbors in the —|— _ _ - -
cube array. The (n + 1) DMA channel provides a link for com- —
municating with the cube I/O system. It is assumed that caching Node Bus
within a node allows the DMA to proceed so that a fraction y of the
internode communication time can be overlapped with the node
processing. The factor y is referred to as the degree of transparency. Cache
The time for an algorithm to run on a hypercube is given by: . Main
| Memory

n + 1 DMA Channels

T(N) = T. + T,(N) + (I = Y)T(N) + T, (1
CPU
where N is the number of node processors in the cube array, T, is
the time of perform the processing, 7, is the internode communi-
cation time, 7; is the time to input the image data, 7, is the time to FIGURE 25 The node processor.

142 I.N. MUDGE AND 'S, ABDEL-RAIIMAN

oulput the image data, and y is the degree of transparency. Ignoring
the 10 time. eguation 1 becomes:

TIN) = T,(N) + (I = YIT(N) (2)

There are two principal contributors to intrinsic inefficiency of
parallel algorithms on Massively Parallel architectures mcmz as ~.~.n
hypercube. The first is the communication c<n_.=n=m_ i:..n:. is in-
curred when y < 1. The other is the dependencies within the
algorithm that do not permit all N processors to be used all the
time. This is reflected by the node efficiency, given by:

A

T(1)
=)
EN = 8T

1
The overall system efficiency is given by:

__rm 3
E(N) = NT(N) 3)

Using equations (2) and (3), and noting that T(1) = 0, then:

E,(N)

E(N) = T.(N)
L+ (1 - y) 2o
=7

We define a perfectly scalable algorithm as one for s;.:n: .MAZV _u
1. N = 1. This requires that E(N) = 1, i.c.. processing is :x.....
cfficient: and (1 =)T (N) = 0, i.c.. the communi ation overhead s
zero. Loosely speaking, a perfectly zﬁ__”_w.._c.:_nc.:::: can make use
of large number of processors without .__::.:.,,_.._:m returns. In gen-
eral, it is desirable to design the parallel algorithm to be perfectly
scalable]20]

Performance on Benchmarks

Low Level Processing

The image is partitioned into subimages of equal sizes, Q.c._. sub-
image assigned 10 a node processor. A natural assignment for the

ARCHITECTURES FOR ROBOT VISION 143
image of M x M Pixels
00 o1d 11 10
00
01 Assign this
Subimage 1o
10

Subimage of R_.-HIZ Pixels

FIGURE 26 Partitioning the image.

hypercube is to partition the M x M image into a Gray code of 2™2
X 2" (n assumed even), subimages similar to an n-dimensional
Karnaugh map, and then to place each subimage with its like
numbered processor. This is shown in Figure 26 for the hypercube
shown in Figure 23. This method for partitioning the image and
assigning the partitions to node processors guarantees that adjacent
subimages are in adjacent processor nodes|20).

The algorithms in the benchmark for low level algorithms can be
implemented as identical programs running in parallel, each in a
processor node. That is, the hypercube is simulating an SIMD
(Single Instruction stream, Multiple Data stream) machine. Hence,
E,(N) = 1 and the only potential contributor to inefficiency would
be the communication overhead that results from the need 10 ex-
change data around the cdges of the subimage to implement neigh-
borhood operations. This is depicted in Figure 27. It shows a sub-
image in node A and the data that has to be moved from adjacent
nodes. The number of pixels that has to be transferred is given
by:

AM | m +im = 1)
ALY il m - N2
VANL2 ’

144 T.N. MUDGE AND T.$. ABDEL-RAIIMAN
V22l LLLLLds
\ .
/ i / Data required
“ Subimage | - oy A
“ in \
node A
/ 2

FIGURE 27 Dala needed by a subimage in node A.

where m X m is the size of the kernel used and M X M is the size A.vn
the image. N is the number of node processors. d_o communi-
cation time necessary to move the pixels is proportional to their

number. Hence:

TAN) = kuﬁtx —H_ + (m - Cuu_ (K, is a constant) (4)

VNL2

The processing time at a node is proportional to the :E:cw_. of
pixels in that node. All nodes have the same number of pixels.

Hence:

2
T,(N) = K _SNRZI (K, is a constant)

To insure perfect scalability, the following is required:

E,(N) =1 (which is true)

ARCHITECTURES FOR ROBOT VISION 145

and
(1 = Y)T(N) < T,(N).
That is,
L
k_c Y) ﬁs\x | <t

The above equation suggests that the granularity of the subimages
be fairly large if scalability of the algorithm is to hold.

Intermediate Level Processing

The image is mapped onto the nodes of the hypercube array in
exactly the same manner as in low level processing. In fact, in many
cases intermediate level processing directly follows low level pro-
cessing and the image is already mapped in that manner. The two
factors that affect the perfect scalability of the algorithm are node
efficiency and communication overhead.

The subimages, which are of equal areas require. in general,
unequal amounts of processing times in the case of intermediate
level algorithms. This can be easily seen in the example of the edge
following algorithm where each subimage contains a different num-
ber of edge pixels. This uneven workload results in some processing
nodes finishing the algorithm before other processing nodes and,
consequently, waiting idle for them. This in turn causes the node
efficiency to drop and affects the perfect scalability of the algorithm.
In [21], a Binomial stochastic model is assumed for the distribution
of the edge pixels in the image. The model assumes that the prob-
ability of a pixel being on an edge is a constant p for all pixels in the
image. The drop in efficiency is then quantified. The result in shown
in Figure 28 for various values of P as a function of the number of
pixels per subimage. As the number of processing nodes grows, the
number of pixels per subimage decreases and the node efficiency
drops. It might be necessary to re-map the image based on an equal
load basis rather than on an equal size basis to improve the node
efficiency. Further research is needed to evaluate possible re-
mapping stratcgies.

146 TN MUDGE AND TS ABDEL -RATIMAN
1.00
p=08
oS
70
-
25 _|
>
v
c
v .50 |
v
-
b
(&
575~
=02
250 -1 P
125]
0 T T T T T T T T
] 1”7 b <] L) es a0 96 1n2 128
Pixels/Subimage

FIGURE 28 Naode cfficiency for imermediate level algorithms.

The communication overhead for intermediate level algorithms is,

in general, difficult to estimate without rzci_camn of :6. distribu-
tion of the edge pixcls in the image. However, _=.o_§na_n.o._n<o_
algorithms generally manipulate less Exo_m.::.: low level algorithms
and. hence, less pixels have to be communicated among the process-
ing nodes. Thercefore, equation 4 can form an upper 7..:::_ on the
communication overhcad. However, further rescarch still has to be
conducted to accurately estimate the communication overhead for

intermediate level algorithms.

ARCIHTECTURES FOR ROBOT VISION 147

High Level Processing

The implementation of some of the backtracking search algorithms
for high level processing can be, in general divided into three phases:
startup phase. computation phase and wind-down phase[22). In the
startup phase, the problem is assigned to a single node in the
hypercube array. The problem is then expanded in that node and
diffused to other nodes in the hypercube array. In the computation
phase, the processors are busy performing the necessary computa-
tions. Finally, in the wind-down phase. the results are collected
from the hypercube nodes and are combined to obtain the final
resuit.

The node efficiency depends to a large extent on the ratio be-
tween the amount of time spent in the computation phase and the
time spent in the other two phases. Rescarch has yet to be con-
ducted to quantify this ratio and. hence, the node efficiency.

The communication time overhead depends on the time spent in
the startup and wind-down phases as well as whether the node
processors communicate during the computation phase to maintain
a balanczd load of subproblems in the processing nodes. Again,
further research i. needed to determine the communication over-
head.

CONCLUSIONS

In this chapter a study of special purpose architectures for Robot
Vision was presented. The study was composed of two parts. In the
first part, algorithms for Robot Vision were classified and the basic
characteristics of each class were discussed. Benchmark algorithms
for each class were proposed. Although the benchmark algorithms
are only a sample of the possible algorithms used in Robot Vision.
they do reflect the basic characteristics of each class of these
algorithms.

In the second part of the study. special purpose architectures for
Robot Vision were discussed. The basic features and characteristics
of cach group of architectures were presented. Furthermore. the

148 . T.N. MUDGE AND T.S. ABDEL-RAIIMAN

performance of each group of architectures on the benchmark al-
gorithm was presented.

While commercially available machines provide a reasonable solu-
tion to some low level processing, they do not provide enough
computational power nor do they provide the desired functionality
for intermediate and high level processing. It appears for future
Robot Vision application that Massively Parallel machines will be
needed to provide that power and functionality. However, consider-
able research has still to be conducted to determine how best to use
these machines for higher level processing.

REFERENCES

. M. Brady. Computational Approaches to image Understanding, Computing Sur-
veys, vol. 14, no. |, pp. 3~71, March 1982. . .

2. E.R. Davis, Image Processing — its Milieu, its nature, .E.&. Constraints on the

design of Special Architectures for its Implemenation. in ﬁew:.:::a Structures
Jor Image Processing, M.J. Duff, ed., Ncw York: >nw.._n=..n.v_,nmf 1983.

3. P.E. Daniclsson and S. Levialdi. Computer Architectures for Pictorial Informa-
tion Systems, Computer, vol. 14, no. 11, pp. 53-67, Nov. 1981. .

4. A. Rosenfeld and A.C. Kak, Digital Picture Processing, New York: Academic
ress, 1976.

S w.M..Oc__Nn_nu and P. Wintz, Digital Image Processing, Reading: Addison-
Wesley, 1977.)

6. J.F. Canny, Finding Edges and Lines in Images. Master Thesis, Department of
Electrical Engincering and Computer Science, MIT, June 1983.)

7. D.IH. Ballard and C.M. Brown, Computer Vision, New Jerscy: Prentice-11all,
9Y82.

8. ._.—._. ._.w.:_nw.. T.N. Mudge and R.A. Volz, Recognizing Partially Occluded Parts,

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-7, no. 4,
pp. 410-421, July 1985.

. B.A. Nadel, The Consistent Labeling Problem, Part |: Background and Problem
Formulation, Report DCS-TR-164, Computer Science Dept., Rutgers Uni-
versity, New Brunswick, N.J., 1985, Also appears as _nn.vo: ‘nw—..._.—w._u.xu.
Dept. Electrical Engineering and Compuler Science, Universily of Michigan,
Ann Arbor, Ml 1985.

10. B.A. Nadcl, The Consistent Labeling Problem, Part 2: Subproblems, Enumera-
tions and Constraint Sausfiabidity, Report DCS-TR-165, Computer Scieuce
Dept., Rutgers University, New Brunswick, N.J., 1985. Also appears as
Report CRL-TR-14-85, Dept. Electrical Engineering and Computer Scicnce,
University of Michigan, Ann Arbor. MI 1985, .

1. B.A. Nadel, The Consistent l.abeling Problem. Part 3: The (eneralized Back-

tracking Algorithin, Report DCS-TR-166, Computer Science Dept., Rutgers

°

20.

21.

22.
23.
4.

26.

ARCHITECTURES FOR ROBOT VISION 149

University, New Brunswick, N.J., 1985. Also appears as Report CRL-TR-12-
85, Dept. Electrical Engincering and Computer Scicnce., University of Michi-
gan, Ann Arbor, MI 48109,

- R.A. Rutenbar, T.N. Mudge and D.E. Atkins. A Class of Cellular Architectures

{o Support Physical Design Automation, IEEE Trans. on CAD of 1C’s and
Systems, vol. CAD-3, no. 4, pp. 264 - 274, Oct 984, '

- R.M. Lougheed and D.L. McCubbrey, The Cytocomputer: A Practical Pipelined

Image Processor, Proc. 7th Annual Symp. on Computer Architecture, pp.
271-277, May 1980.

- 8. Krishna and R. Frisch, Array Processor Tamed by Structural Innovations,

Elecironic Products Magazine, Aug. 1984,

- G.H. Barmmes, et al., The llliac IV Computer, IEEE Truns. Computers, vol. C-17,

no. 8, pp. 746757, Aug. 1968.

- K.E. Baicher, Architecture of a Massively Parallel Processor. Proc. 7th Annual

Symp. on Computer Architecture, pp. 168- 174, May 1980,

- D.H. Schacler, A Pyramid of MPP Processing Elemenis — Experiences and

Plans, Proc. 18th Int'l Conf on System Sciences, 198S.

. H.J. Sicgel, e1 al., PASM: A Partitionable SIMDIMIMD System for Image

Processing and Pattern Recognition, IEEE Trans. Computers, vol. C-30, no.
12, pp. 934-947, Dec. 1981.

. G.F. Phisier, et al., The IBM Research Parallel Processor Prototype (RP3):

Introduction and Architecture, Proc 1985 Int'l Conf on Parallel Processing. pp.
764—-T771, Aug. 1985.

T.N. Mudge, Vision Algorithms for Hypercube Machines. Proc of the IEEE
Workshop on Computer Architecture for Pattern Analysis and Image Database
Management, pp. 225~ 230, Nav. 198S.

T.N. Mudge and T.S. Abdel-Rahman, Efficiency of Feature Dependent Algor-
ithms for the parallel Processing of Images. Proc. 1983 Int'l Conf on Parallel
Processing, pp. 369~373, Aug. 1983

B.W. Wah, G.J. Li and C.F. Yu, Multiprocessing of Combinatorial Search
Problems. Computer, vol. 18, no. 6, pp. 93— 108, June 1985.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing. Englewoud
Cliffs: Prentice-Hall, 1975.

T.Y. Feng, A Survey of Interconnection Networks. Computer, vol. 14, no. 12,
Dec. 1981.

- R.O. Duda and P.E. Harl, Use of the Hough Transform 1o Detect Lines and

Curves in Pictures, Comm. ACM, val. 15, no. 1, pp- 11-15, Jan. 1972,

S.L. Tanimoto, A Pyramidal Approach to Parallel Processing, Proc. 10th Annual
Int'l Symp. on Computer Architecture, Stockholm. Sweden. pp. 372~ 37K,
June 1983,

